

Hydraulic cylinders type CC - round heads with counterflanges

to ISO 6022 - nominal pressure 25 MPa (250 bar) - max 32 MPa (320 bar)

SWC Cylinders Designer

Software for assisted selection of Atos cylinders & servocylinders codes, including cylinder's sizing, full technical information, 2D & 3D drawings in several CAD formats.

Available for download at <u>www.atos.com</u>

CC cylinders have engineered double acting construction, designed to suit the requirements of industrial heavy duty applications: top reliability, high performances and long working life.

- Bore sizes from 50 to 320 mm
- Rods with rolled threads
- 6 standard mounting styles
- 3 seals options
- Adjustable cushioning
- Rod guide rings for low wear
- Optional built-in position transducer, see tab. B310
- Attachments for rods and mounting styles, **see tab. B500**

For cylinder's choice and sizing criteria **see tab. B015**

1 MODEL CODE																		
CC	Ρ	-	50	1	36	*	0500	-	S	3		0	1	-	A	-	B1E3X1Z3	**
		_																Series number (1)
Cylinder series CC to ISO 6022																	Heads' configura Oil ports positions B1 = front head X1 = rear head	tion (2), see section 11
Rod position transducer																	Cushioning adjustr E3 = front head	ments positions
 - = omit if not requested F = magnetosonic M = magnetosonic programmatic 	ble																Z3 = rear head	
N = magnetostrictive P = potentiometric															0	ptio	ns (2):	
V = inductive Transducer available on request contact our technical office	st,														C D Y	vers = fr = re	ized oil ports, see se ont oversized oil por ar oversized oil port	ection 3 t
]														F	ang = fr	e oil ports, see secti ont and rear SAE 60	on 6 100 flange oil ports
Bore size, see section 3															R	od tr = ni = in	eatment, see sectio ckel and chrome pla duction surface barde	n 🖲 ating
from 50 to 320 mm				J												ir ble = fr = r	eeds, see section 13 ont air bleed	
Rod diameter, see sections 7 from 36 to 220 mm] and	9													D	raini = roo	ng, see section 14 d side draining	
													Se	ealir	ıg sy	ster	n, see section 12	
Stroke, see section 4													1 2 4	= (N = (F = (N	IBR + KM IBR	PTFE + PT + PT	E + POLYURETHANE) h FE) very low friction a FE) very low friction	igh static and dynamic sealing and high temperatures and high speeds
up to 5000 mm								J										
												Spa	cer,	see	sec	tion [5	150
Mounting style, see sections [2 an	ıd 🔳]								l	U = 1		e z	= 50	11111	4 = 100 mm 0 =	150 mm 6 = 200 mm
				R	EF. IS	0										_	7	
 A = front flange B = rear flange L = intermediate trunnion S = fixed eye with spherical X = basic execution 	bear	ring		N N N	1F3 1F4 1T4 (3) 1P5 -						Cusi) = r Slow I = r 2 = f	hionir none / adju rear or ront o	ng, sta nly nly	see ble	sect	on [1	0	
Z = front threaded holes				N	1X5					3	3 = f	ront a	nd	rear				

(1) For spare parts request indicate the series number printed on the nameplate only for series < 20

(2) To be entered in alphabetical order

(3) XV dimension must be indicated in the model code, see section 3

INSTALLATION DIMENSIONS [mm] - see figures in section 2 3

ØBo	ore	50	63	80	100	125	140	160	180	200	250	320
Ø Ro	od	36	45	56	70	90	90	110	110	140	180	220
α, β		32,5°, 25°	32°, 26°	35°, 20°	35°, 20°	35°, 20°	27,5°, 17,5°	25°, 20°	25°, 20°	25°, 20°	27°, 18°	25°, 20°
AA		90	105	128	152	188	215	241	275	295	365	458
в/в	A f8/H8 (4)	63	75	90	110	132	145	160	185	200	250	320
BG n	nin	20	23	23	30	33	33	43	40	40	58	70
cx⊦	17	32	40	50	63	80	90	100	110	125	160	200
D (1)		29	36	36	42	42	52	52	52	52	58	58
D1 (1)	36	42	42	52	52	58	58	58	58	69	69
E ma	× (2)	108	124	148	175	214	255	270	315	330	412	510
EE (1) 6g	G 1/2	G 3/4	G 3/4	G1	G 1	G 1 1/4	G 1 1/4	G 1 1/4	G 1 1/4	G 1 1/2	G 1 1/2
EE1	(1) 6g	G 3/4	G1	G1	G 1 1/4	G 1 1/4	G 1 1/2	G 1 1/2	G 1 1/2	G 1 1/2	G2	G2
EP		27	35	40	52	66	65	84	88	102	130	162
EX h	12	32	40	50	63	80	90	100	110	125	160	200
FB⊢	113	13,5	13,5	17,5	22	22	26	26	33	33	39	45
FC js	\$13	132	150	180	212	250	300 (7)	315	365 (7)	385	475	600
LT m	in	40	50	63	71	90	113	112	135	160	200	250
MS n	nax	40	50	63	71	90	113	112	118	160	200	250
MT [I	Nm] (3)	30	50	85	152	255	255	304	370	490	950	1750
NF js	:13	25	28	32	36	40	40	45	50	56	63	80
PJ (6)	120	133	155	171	205	208	235	250	278	325	350
RT		n°8 holes M8	n°8 holes M10	n°8 holes M12	n°8 holes M14	n°8 holes M16	n°12 holes M16	n°12 holes M18	n°12 holes M20	n°12 holes M22	n°12 holes M27	n°12 holes M33
TD f8	3	32	40	50	63	80	90	100	110	125	160	200
TL js	13	25	32	40	50	63	70	80	90	100	125	160
TM h	12	112	125	150	180	224	265	280	320	335	425	530
UC n	nax	160	180	215	260	300	340	370	425	455	545	680
ИМ		162	189	230	280	350	405	440	500	535	675	850
UV m	nax	108	124	150	180	219	260	280	315	333	412	510
VD		4	4	4	5	5	5	5	5	5	8	8
VE m	ax (4)	29	32	36	41	45	45	50	55	61	71	88
WC (6)	22	25	28	32	36	36	40	45	45	50	56
WF (4) (6)	47	53	60	68	76	76	85	95	101	113	136
XO (6)	305	348	395	442	520	580	617	690	756	903	1080
XV (5)	minimum stroke for style L	175	185	150	160	245	250	260	350	390	460	560
(6)	min	260	285	290	320	410	440	465	540	590	690	820
	max	85 + stroke	100 + stroke	140 + stroke	160 + stroke	165 + stroke	190 + stroke	205 + stroke	190 + stroke	200 + stroke	230 + stroke	260 + stroke
Y ±2		98	112	120	134	153	181	185	205	220	260	310
ZB m	lax	244	274	305	340	396	430	467	505	550	652	764
ZP (6	i)	265	298	332	371	430	465	505	550	596	703	830

NOTES TO TABLE 3

(1) D, EE - Oil ports and drain are threaded according to GAS standard with counter-bore dimension **D** according to ISO 1179-1 (see figure below).

When oversized oil ports are selected (D = front oversized oil ports, Y = rear oversized oil ports) dimensions D and **EE** are respectively modified into D1 and EE1

- (2) E If not otherwise specified in the figures in section (2) this value is the front and rear round heads dimension for all the mounting styles (see figure above)
- (3) MT Screws tightening torque. Mounting screws must be to a minimum strength of ISO 898/2 grade 12.9
- (4) B, VE, WF See figure in section 7
- (5) XV For cylinders with mounting style L the stroke must always exceed the minimum values reported in the table. The requested XV value must be included between XV min and XV max and it must be always indicated, with dimension in millimeters, together with the cylinder code. See the following example:

CC - 50 / 36 * 0500 - L308 - A -B1E3X1Z3 XV = 300

(6) The tolerance is according to the table below

Mounting dimensions	PJ, ZP, XO	WF, WC, XV
stroke < 1250	±1,5	±2
1250 > stroke < 3150	±3	±4
stroke > 3150	±5	±8

(7) The dimension is not according to ISO 6022

4 STROKE SELECTION

Stroke has to be selected a few mm longer than the working stroke, to prevent to use the cylinder heads as mechanical stroke-end. The table below shows the minimum stroke depending to the bore.

Minimum stroke [mm]

Ø Bore	50	63	80	100	125	140
Minimum stroke	70	70	20	25	50	50
Ø Bore	160	180	200	250	320	
Minimum stroke	50	70	70	80	120	\nearrow

Maximum stroke: • 5000 mm

Stroke tolerances:

0 +2 mm for strokes up to 1250 mm
0 +5 mm for strokes from 1250 to 3150 mm

0 +8 mm for strokes over 3150 mm

5 SPACER

For strokes longer than 1000 mm, proper spacers have to be introduced in the cylinder's construction to increase the rod and piston guide and to protect them from over-loads and premature wear. Spacers can be mode. The introduction of spacers increases the overall cylinder's dimensions: spacers' lenght has to be added to all stroke depen-dent dimensions in section 3.

RECOMMENDED SPACERS [mm]

Stroke	1001 ÷ 1500	1501 ÷ 2000	2001 ÷ 2500	2501 ÷ 5000
Spacer	2	4	6	8
coue				

6 SAE 6000 FLANGE OIL PORTS - DIMENSIONS TO ISO 6162-2 [mm]

Ø Bore	DN	EC	EA ±0,25	EB ±0,25	ED 6g	FF 0 / -1,5
50 (*)	13	46	18,2	40,5	M8x1,25	13
63 (*)	10	51	23.8	50.8	M10v1 5	10
80		65	20,0	50,0	WITOX1,5	15
100	25	77	27.8	57,2	M10v1 75	25
125	- 25 -	99	21,0		WI12X1,75	25
140		118				
160	30	126	31,6	66,6	M14x2 (**)	32
180		150				52
200		158				
250	38	195	36,7	79,3	M16x2	38
320	51	245	44,5	96,8	M20x2,5	51

CODE: M = Front and rear SAE 6000 flange oil ports

Flange oil port allows an easy cylinder's connection to the piping system and it can work up to the maximum pressure 32 MPa (320 bar).

(*) SAE flange not available for style B (ISO MF4) (**) Not compliance to ISO 6162-2

7 ROD END DIMENSIONS [mm]

Ø Bore	50	63	80	100	125	140	160	180	200	250	320
Ø Rod	36	45	56	70	90	90	110	110	140	180	220
A max	36	45	56	63	85	90	95	105	112	125	160
сн	30	39	48	62	80	75	100	100	128	15 (*)	20 (*)
KK 6g	M27x2	M33x2	M42x2	M48x2	M64x3	M72x3	M80x3	M90x3	M100x3	M125x4	M160x4
WL min	8	10	10	10	15	15	15	15	15	-	-

(*) n° 2 holes per key

8 CYLINDER'S HOUSING FEATURES

The cylinder's housings are made in different materials depending to the bore; the internal surfaces are lapped: diameter tolerance H8, roughness Ra \leq 0,25 µm.

ø Bore	Material	Rs min [N/mm ²]
50÷200	Cold drawn and stressed steel	450
250-320	Hot rolled steel	355

9 RODS FEATURES and options

The rods materials have high strength, which provide safety coefficients higher than 4 in static stress conditions, at maximum working pressure. The rod surface is chrome plated: diameter tolerances f7, roughness Ra \leq 0,25 µm. Corrosion resi-

S	ance of 200n in neutral spray to ISO 9227 INSS.											
ſ		Matarial	Rs min	Chrome								
L	ø Rod	Material	[N/mm²]	min thickness [mm]	hardness [HV]							
ſ	36÷110	Hardened and tempered alloy-steel	700	0.020	850 1150							
ſ	140	Alloy steel	450	0,020	050-1150							
ſ	180÷220	Carbon steel	360	0,045	850-1150							

Rod diameters from 36 to 70 mm have rolled threads; in rolling process the component material is stressed beyond its yield point, being deformed plastically. This offers many technical advantages: higher profile accuracy, improved fatigue working life and high wear resistance. See **tab. B015** for the calculation of the expected rod fatigue life. **Contact our technical office** in case of heavy duty applications.

Rod corrosion resistance and hardness can be improved selecting the options **K** and **T** (option K affects the strength of standard rod, see **tab. B015** for the calculation of the expected rod fatigue life):

 \mathbf{K} = Nickel and chrome-plating (for rods from 36 to 110 mm) Corrosion resistance (rating 10 to ISO 10289):

500 h in acetic acid salt spray to ISO 9227 AASS
1000 h in neutral spray to ISO 9227 NSS

T = Induction surface hardening and chrome plating (for rods up to 140 mm) • 56-60 HRC (613-697 HV) hardness

ROD-PISTON COUPLING

The rod and piston are mechanically cou-The rod and piston are mechanically cou-pled by a threaded connection in which the thread on the rod is at least equal to the external thread KK, indicated in the table [7]. The piston is screwed to the rod by a pre-fixed tightening torque in order to improve the fatigue resistance. The stop pin ① avoids the piston unscrewing.

10 CUSHIONING

Cushioning are recommended for applications where: • the piston makes a full stroke with speed over than 0,05 m/s; • it is necessary to reduce undesirable noise and mechanical shocks; • vertical application with heavy loads. The stroke-end cushioning are hydraulic dampers specifically designed to dissipate the energy of the mass connected to the cylinder rod, by progressively increasing the pressure in the cushioning chamber and thus reducing the rod speed before the cylinder's mechanical stroke-end (see the graphics at side). See the **tab. B015** for the max damping energy. The cylinder is provided with needle valve to optimize cushioning performances in different applications. The regulating screws are supplied fully screwed in (max cushioning effect).

In case of high masses and/or very high operating speeds it is recommended to back them off to optimize the cushioning effect. The adjustment screw has a special design to prevent unlocking and expulsion. The cushioning effect is highly ensured even in case of variation of the fluid viscosity.

Ø Bore		50	63	80	100	125	140	160	180	200	250	320
Ø Rod		36	45	56	70	90	90	110	110	140	180	220
Cushioning	Lf front	29	40	45	50	60	60	64	64	64	80	100
[mm]	Lf rear	35	38	45	50	60	60	64	64	64	64	64

11 POSITION OF THE OIL PORTS AND CUSHIONING ADJUSTMENTS

FRONT HEAD: **B1** = oil port position; **E3** = cushioning adjustment position REAR HEAD: **X1** = oil port position; **Z3** = cushioning adjustment position. The oil ports and cushioning adjustment positions are only available, respectively, on sides 1 and 3 (see figure at side).

Example of model code: CC-200/140 *0100-S301 - A - B1E3X1Z3

12 SEALING SYSTEM FEATURES

The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed is warmly suggested, see tab. B015. Special sealing system for low temperature, high frequencies (up to 20 Hz), long working life and

heavy duty are available, see **tab. TB020.** All the seals, static and dynamic, must be periodically replaced: proper spare kits are available, see section 18. Contact our technical office for the com-

patibility with other fluids not mentioned below and specify type and composition. See section 15 for fluid requirements

Lf is the total cushioning lenght. When the
stroke-end cushioning are used as safety
devices, to mechanically preserve the cylin-
der and the system, it is advisable to select
the cylinder's stroke longer than the opera-
ting one by an amount equal to the cushio-
ning lenght Lf; in this way the cushioning
effect does not influence the movement
during the operating stroke

Stroke

operating pressure - bar

Sealing	Material	Features	Max	Fluid	Fluids compatibility	ISO Standards for seals		
system	Wateria	reatures	[m/s]	range	r fulus compatibility	Piston	Rod	
1	NBR + PTFE + POLYURETHANE	high static and dynamic sealing	0,5	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606	ISO 7425/1	ISO 5597/1	
2	FKM + PTFE	very low friction and high temperatures	4	-20°C to 120°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFB, HFC (water max 45%), HFD-U, HFD-R	ISO 7425/1	ISO 7425/2	
4	NBR + PTFE	very low friction and high speeds	4	-20°C to 85°C	Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U	ISO 7425/1	ISO 7425/2	

13 AIR BLEEDS

 $\overline{\text{CODES}}$: **A** = front air bleed: **W** = rear air bleed

The air in the hydraulic circuit must be removed to avoid noise, vibrations and irregular cylinder's motion: air bleed valves are recommended to realize this operation easily and safely

Air bleeds are positioned on side 3, see section 1. For a proper use of the air-bleed (see figure on side) unlock the grub screw (1) with a wrench for hexagonal head screws, bleed-off the air and retighten as indicated in table at side

14 DRAINING

CODE: L = rod side draining

The rod side draining reduces the seals friction and increases their reliability; it is mandatory for cylinders with strokes longer than 2000 mm, with rod side chamber constantly pressurized and for servocvlinders.

The draining is positioned on the same side of the oil port, between the wiper and the rod seals (see figure at side). It is recommended to connect the draining port to the tank without backpressure. Draining port is G1/8.

15 FLUID REQUIREMENTS

Cylinders and servocylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; HFB water in oil emulsion, 40% water; HFC water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters). The fluid must have a viscosity within 15 and 100 mm²/s, a temperature within 0 and 70°C and fluid contamination class ISO 20/18/15 according to ISO 4406 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog.

		MASS FOR STYLE X for single rod		ADDITIONAL MASSES depending on mounting styles and options					
Ø Bore [mm]	Ø Rod [mm]	for 100 mm stroke	each 100 mm more	Styles A, B	Style L	Style S	front cushioning	rear cushioning	each 50 mm spacer
50	36	18	1,9	2,77	3,15	1	0,2	1	1,3
63	45	20,1	2,75	3,96	4,64	2,58	0,3	1	2
80	56	35,5	4,15	7,17	7,81	4,54	0,5	1	3,08
100	70	58	6,5	11,14	13,38	7,18	0,8	1,5	4,81
125	90	100	10,17	16	23,68	14,02	1,2	2	7,40
140	90	144	10,73	22,5	41,09	23	1,2	2	8,90
160	110	189	15,12	29,92	47,92	27,5	1,7	5	11,72
180	110	262	17,32	41,66	70,16	45,9	2,5	5	14,92
200	140	335	22,94	54,22	81,12	69	2,5	5	17,75
250	180	660	42,62	86,01	167	116	2,5	5	30,58
320	220	1230	65,35	166	304	250	2,8	5	49,32

Note: the masses related to the other options, not indicated in the table, don't have a relevant influence on the cylinder's mass

17 CYLINDER SECTION

